| твz-ғ                                                                                                                                                                                               | RIV GmbH                                                                                                                                    |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| MODELLING AND SIMULATION OF COATING-SUBSTRATE-SYSTEMS<br>STATE-OF-THE-ART AND FUTURE TRENDS                                                                                                         |                                                                                                                                             |  |  |  |  |  |
| Jürgen Leopold; Reiner Wohlgemuth<br>TBZ-PARIV / Chemnitz / Germany<br>Debin Shan<br>Harbin Institute of Technology / PR China<br>Jianguo Lin<br>Imperial College London / United Kingdom<br>Yi Qin |                                                                                                                                             |  |  |  |  |  |
| Outline                                                                                                                                                                                             | University of Otratilolyde, Olasgow, United Ringdom                                                                                         |  |  |  |  |  |
| >State<br>>Why<br>>Bridg<br>(M3-2S<br>>Sum                                                                                                                                                          | f-the-art<br>we need Multiscale Modeling?<br>g the Gaps Between the Modelling Activities at Different Scales<br><sup>2</sup> roject)<br>ary |  |  |  |  |  |



























TBZ-PARIV GmbH Imperial College State-of-the-art  $G_c = \frac{1}{2}T_{\max}\delta_c$ Т, Submode I  $\delta_{\max} \quad \begin{array}{l} \text{is the characteristic} \\ \text{cohesive-zone length} \end{array}$ (a) (c) (b) Strathchyde (a) Mises stress; (b) Damage co nt; (c) Tr

















TBZ-PARIV GmbH Imperial College Strathclyde Glasgow Table 1. List of M32S case studies Selected components Requested Coating Functionalities Candidate coatings Applicati field Partner Business case Rough turning of cast iron (grey cast iron GG25) Ar Automotive (bars, brake discs, cylinder Si<sub>3</sub>N<sub>4</sub> based ceramic cutting tools Hard coating (TiAlCN) DIAD Antiwear block, etc.) Catodic are PVD with Turning of uenched and CVD coated Hard metal insert (TiCN, Al<sub>2</sub>O<sub>3</sub> and TiN) Casting dies for railway application Antiwear and quenched and tempered steel (15CrMoV5-10) FDE having a Cr/CrN oxidation resistance Increase of tool life Increase of wear resistance of the roller with 30% cos reduction with respect to state of the art solution CrMoV alloyed steel roller mounted on a cold rolling 60 tons mill Cold rolling of Jewels, biomedical, food sector precious metals, Cu alloys or Al alloy sheets Open to suggestions POLITO 9<sup>th</sup> THE "A" Coatings International Conference ; 3 - 5 October 2011 Thessaloniki Greece Leonold - Wohlgemuth - Sha





AFEM Module for Super Lattice Coatings New approach for Multiscale Problems in Coating-Substrate-Systems 100 several 50 nm layers simulated starting with TNA and finished with CNA at to instrate to instrate to instrate to instrate to substrate to substrate to substrate to substrate to coating-Substrate Substrate TACFM\_1709 with 889105 elements (superlattice-TIACTM\_1709 with 889105 elements to coating-Substrate TACTM\_1709 with 889105 elements Macro submodelling to export displacements to CPFE subdomain displacements to C









|                 | БСТВZ                                                                                                                                                  | PARIV GmbH                                      | Harbin Institu<br>of Technology    | te Imperial College Strathclyde Strathclyde Glasgow |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|-----------------------------------------------------|--|--|--|
|                 | Simulation of the TiN film growth on TiN(001)                                                                                                          |                                                 |                                    |                                                     |  |  |  |
|                 | Potentials                                                                                                                                             | Interaction                                     | MEAM Potential                     | MD-Simulation                                       |  |  |  |
|                 | etennute                                                                                                                                               | Ti-N                                            | Ours                               | 33300                                               |  |  |  |
|                 |                                                                                                                                                        | N-N                                             | Lee's <sup>[9]</sup>               | attempt to move away                                |  |  |  |
|                 |                                                                                                                                                        | Ti-Ti                                           | Kim's <sup>[10]</sup>              | Virtual wall                                        |  |  |  |
|                 | Parameters of MD model                                                                                                                                 |                                                 |                                    |                                                     |  |  |  |
|                 | Model                                                                                                                                                  | Description terr                                | n Value                            | E                                                   |  |  |  |
|                 |                                                                                                                                                        | $l_x \! \times \! l_y \! \times \! l_z N_{sub}$ | [100]×[010]×[001] 1                | 100                                                 |  |  |  |
|                 |                                                                                                                                                        | $d_{\rm res}$                                   | 3 ML                               |                                                     |  |  |  |
|                 |                                                                                                                                                        | dfree                                           | 3 ML                               |                                                     |  |  |  |
|                 |                                                                                                                                                        | r <sub>iso</sub>                                | $\frac{1}{2}a_{\rm T}/100$ adatoms | periodic belunders characters 2                     |  |  |  |
|                 |                                                                                                                                                        | Т                                               | 300-700 K                          | concepts we have                                    |  |  |  |
|                 |                                                                                                                                                        | direction                                       | normal to substra                  | te                                                  |  |  |  |
|                 |                                                                                                                                                        | $E_{\rm k}$                                     | 2-10 eV                            |                                                     |  |  |  |
|                 | Incident                                                                                                                                               | Н                                               | 20 Å, move up at r                 | iso Basel region                                    |  |  |  |
|                 | atom                                                                                                                                                   | R <sub>dep</sub>                                | 1 atom/ps                          |                                                     |  |  |  |
|                 |                                                                                                                                                        | N <sub>dep</sub>                                | 500                                | Schematic of the MD model of                        |  |  |  |
|                 | Virtual wall                                                                                                                                           | h                                               | 4.8 Å, move up at a                | atomic deposition                                   |  |  |  |
| 9n THE<br>3 - 5 | 9 <sup>th</sup> THE "A" Coatings International Conference ;<br><b>3 - 5 October 2011</b> Thessalonki, Greece Leopold – Wohlgemuth – Shan – Lin - Qin 3 |                                                 |                                    |                                                     |  |  |  |









| TBZ-PARIV GmbH                                                                                                                                                  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| ➤ "Conventionally" Finite Element Simulation can be applied for<br>deformation and stability analysis of coating-substrate-systems<br>That's "state-of-the-art" |  |  |  |  |  |
| ➤"Virtual" Cutting Tool Design and "Virtual" Machining is an important<br>topic in manufacturing                                                                |  |  |  |  |  |
| New workpiece materials are responsible for new demands in<br>coating-substrate-structures                                                                      |  |  |  |  |  |
| In addition to "homogeneous" coatings – more and more structured<br>coatings are developed                                                                      |  |  |  |  |  |
| $\succ \mbox{This}$ new type of coatings are "non-homogeneous" and "non-isotropic"                                                                              |  |  |  |  |  |
| ≻Subdomain techniques : Continuum-mechanically methods + ab-initio methods<br>can be used in the near future                                                    |  |  |  |  |  |
| Thank you for your Attention!                                                                                                                                   |  |  |  |  |  |
| 9 <sup>n</sup> THE A' Coatings International Conference ;<br><b>3 - 5 October 2011</b> Thessaloniki, Greece Leopoid – Wohlgemuth – Shan – Lin - Qin 3           |  |  |  |  |  |